skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Xue, Z George"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Extreme precipitation during Hurricane Florence, which made landfall in North Carolina in September 2018, led to breaches of hog waste lagoons, coal ash pits, and wastewater facilities. In the weeks following the storm, freshwater discharge carried pollutants, sediment, organic matter, and debris to the coastal ocean, contributing to beach closures, algae blooms, hypoxia, and other ecosystem impacts. Here, the ocean pathways of land‐sourced contaminants following Hurricane Florence are investigated using the Regional Ocean Modeling System (ROMS) with a river point source with fixed water properties from a hydrologic model (WRF‐Hydro) of the Cape Fear River Basin, North Carolina's largest watershed. Patterns of contaminant transport in the coastal ocean are quantified with a finite duration tracer release based on observed flooding of agricultural and industrial facilities. A suite of synthetic events also was simulated to investigate the sensitivity of the river plume transport pathways to river discharge and wind direction. The simulated Hurricane Florence discharge event led to westward (downcoast) transport of contaminants in a coastal current, along with intermittent storage and release of material in an offshore (bulge) or eastward (upcoast) region near the river mouth, modulated by alternating upwelling and downwelling winds. The river plume patterns led to a delayed onset and long duration of contaminants affecting beaches 100 km to the west, days to weeks after the storm. Maps of the onset and duration of hypothetical water quality hazards for a range of weather conditions may provide guidance to managers on the timing of swimming/shellfishing advisories and water quality sampling. 
    more » « less
  2. Abstract. Coupled physical–biogeochemical models can fill thespatial and temporal gap in ocean carbon observations. Challenges ofapplying a coupled physical–biogeochemical model in the regional oceaninclude the reasonable prescription of carbon model boundary conditions,lack of in situ observations, and the oversimplification of certainbiogeochemical processes. In this study, we applied a coupledphysical–biogeochemical model (Regional Ocean Modelling System, ROMS) to theGulf of Mexico (GoM) and achieved an unprecedented 20-year high-resolution(5 km, 1/22∘) hindcast covering the period of 2000 to 2019. Thebiogeochemical model incorporated the dynamics of dissolved organic carbon(DOC) pools and the formation and dissolution of carbonate minerals. Thebiogeochemical boundaries were interpolated from NCAR's CESM2-WACCM-FV2solution after evaluating the performance of 17 GCMs in the GoM waters. Modeloutputs included carbon system variables of wide interest, such aspCO2, pH, aragonite saturation state (ΩArag), calcitesaturation state (ΩCalc), CO2 air–sea flux, and carbon burialrate. The model's robustness is evaluated via extensive model–datacomparison against buoys, remote-sensing-based machine learning (ML)products, and ship-based measurements. A reassessment of air–sea CO2flux with previous modeling and observational studies gives us confidencethat our model provides a robust and updated CO2 flux estimation, andNGoM is a stronger carbon sink than previously reported. Model resultsreveal that the GoM water has been experiencing a ∼ 0.0016 yr−1 decrease in surface pH over the past 2 decades, accompanied by a∼ 1.66 µatm yr−1 increase in sea surfacepCO2. The air–sea CO2 exchange estimation confirms in accordance with severalprevious models and ocean surface pCO2 observations that theriver-dominated northern GoM (NGoM) is a substantial carbon sink, and theopen GoM is a carbon source during summer and a carbon sink for the rest ofthe year. Sensitivity experiments are conducted to evaluate the impacts ofriver inputs and the global ocean via model boundaries. The NGoM carbonsystem is directly modified by the enormous carbon inputs (∼ 15.5 Tg C yr−1 DIC and ∼ 2.3 Tg C yr−1 DOC) from theMississippi–Atchafalaya River System (MARS). Additionally,nutrient-stimulated biological activities create a ∼ 105 timeshigher particulate organic matter burial rate in NGoM sediment than in thecase without river-delivered nutrients. The carbon system condition of theopen ocean is driven by inputs from the Caribbean Sea via the Yucatan Channeland is affected more by thermal effects than biological factors. 
    more » « less
  3. Environmental temperature is a widely used variable to describe weather and climate conditions. The use of temperature anomalies to identify variations in climate and weather systems makes temperature a key variable to evaluate not only climate variability but also shifts in ecosystem structural and functional properties. In contrast to terrestrial ecosystems, the assessment of regional temperature anomalies in coastal wetlands is more complex since the local temperature is modulated by hydrology and weather. Thus, it is unknown how the regional free-air temperature (T Free ) is coupled to local temperature anomalies, which can vary across interfaces among vegetation canopy, water, and soil that modify the wetland microclimate regime. Here, we investigated the temperature differences (offsets) at those three interfaces in mangrove-saltmarsh ecotones in coastal Louisiana and South Florida in the northern Gulf of Mexico (2017–2019). We found that the canopy offset (range: 0.2–1.6°C) between T Free and below-canopy temperature (T Canopy ) was caused by the canopy buffering effect. The similar offset values in both Louisiana and Florida underscore the role of vegetation in regulating near-ground energy fluxes. Overall, the inundation depth did not influence soil temperature (T Soil ). The interaction between frequency and duration of inundation, however, significantly modulated T Soil given the presence of water on the wetland soil surface, thus attenuating any short- or long-term changes in the T Canopy and T Free . Extreme weather events—including cold fronts and tropical cyclones—induced high defoliation and weakened canopy buffering, resulting in long-term changes in canopy or soil offsets. These results highlight the need to measure simultaneously the interaction between ecological and climatic processes to reduce uncertainty when modeling macro- and microclimate in coastal areas under a changing climate, especially given the current local temperature anomalies data scarcity. This work advances the coupling of Earth system models to climate models to forecast regional and global climate change and variability along coastal areas. 
    more » « less
  4. Abstract Rivers and wetlands are a major source of terrestrial derived carbon for coastal ocean margins. This results in a net loss of terrestrial carbon into the shelf water and their subsequent transport to interior ocean basin. This study investigates the transport of dissolved inorganic carbon (DIC) in the surface‐mixed layer of Louisiana Shelf in northern Gulf of Mexico (nGOM) adjacent to the Wax Lake Delta (WLD) and Barataria Bay (BB), which represent contrasting net land gain and net land loss areas in this region. DIC samples were collected, in conjunction with short‐lived radium isotopes224Ra (t1/2 = 3.66 days) and223Ra (t1/2 = 11.43 days) samples during June and September 2019, to quantify shelf transport of DIC in the surface‐mixed layer during period of high and low river flow, respectively. Radium distribution implied shelf mixing rates of 140–6,759 and 63–2,724 m2 s−1for WLD and BB regions, respectively, with more than tenfold decrease in rates between the two seasons. Net shelf transport of DIC was found to be highest for the WLD region in June, highlighting the importance of freshwater discharge in exporting DIC. An upscaling of our study for the entire Louisiana Shelf indicates that 1.54–20.19 × 109 mol C d−1transported in June 2019 and 0.34–8.12 × 109 mol C d−1in the form of DIC was exported across the shallow region of the shelf during high and low river flow seasons, representing an important source of DIC to the NGOM. 
    more » « less
  5. null (Ed.)
  6. We adapted the coupled ocean-sediment transport model to the northern Gulf of Mexico to examine sediment dynamics on seasonal-to-decadal time scales as well as its response to decreased fluvial inputs from the Mississippi-Atchafalaya River. Sediment transport on the shelf exhibited contrasting conditions in a year, with strong westward transport in spring, fall, and winter, and relatively weak eastward transport in summer. Sedimentation rate varied from almost zero on the open shelf to more than 10 cm/year near river mouths. A phase shift in river discharge was detected in 1999 and was associated with the El Niño-Southern Oscillation (ENSO) event, after which, water and sediment fluxes decreased by ~20% and ~40%, respectively. Two sensitivity tests were carried out to examine the response of sediment dynamics to high and low river discharge, respectively. With a decreased fluvial supply, sediment flux and sedimentation rate were largely reduced in areas proximal to the deltas, which might accelerate the land loss in down-coast bays and estuaries. The results of two sensitivity tests indicated the decreased river discharge would largely affect sediment balance in waters around the delta. The impact from decreased fluvial input was minimum on the sandy shoals ~100 km west of the Mississippi Delta, where deposition of fluvial sediments was highly affected by winds. 
    more » « less